
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 627
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Implementing object oriented design
methodology to develop a testing system.

Danendra Singh (Electrical engineering department, Delhi Technological University, India)

Leonardo M. Reyneri (Electronics and telecommunications department, Politecnico di Torino, Italy)

Abstract--Object oriented designing (OOD) is a widely used development strategy based on the concept that systems should be built from a collection
of reusable components called objects. Instead of using structures that separates functionality and data, objects bounds both. It guarantees that the
system will enjoy a longer life while having far smaller maintenance costs and tends to model the real world in a more complete fashion than do
traditional methods. Unified modelling Language (UML), based on OOD, is implemented using Visual Paradigm, a visual design tool. The system is
divided into actors, use cases and class diagrams having interactions with each other. Schematic files and simulations that are done in a third party
software can be uploaded into the documentation of Class diagrams in UML.

Index Terms-UML, Class Diagram, Actors, Use Cases, Solar cell.

————————————————————

1 INTRODUCTION
Object-oriented design (OOD) is a programming

paradigm that began in the late 60's with an increase in the
complexity of designs. The idea behind the approach was to
build software systems by modeling them based on the real-
world objects that they were trying to represent. One of the
reasons that OOD has gained wide popularity is due to its
systematic approach. The system developed by
implementing OOD is easier to maintain, debug and modify.

OOD involves breaking down a system into subsystems
and then into elementary objects or blocks. Each of these
items are closely associated with their data, functions,
interfaces with other objects, and their characteristics.

Unified Modeling Language (UML) is a general-purpose
modeling language which is based on the concept of OOD. It
was created and developed by Grady Booch, Ivar Jacobson
and James Rumbaugh at Rational Software during 1994–95.
In 1997 it was adopted as a standard by the Object
Management Group (OMG), and has been managed by this
organization ever since. UML helps to specify, model,
visualize, develop and document an under construction
project.

It is interesting to note that that OOD is also similar to
the Yourdon De Marco approach to Structured Analysis
which is intended to be applied to the design of both HW
and SW systems. More recently also UML evolved into a
dialect (SysML) which is intended for the design of HW
systems

This paper describes an academic approach to Object

Oriented Engineering (OOE), also referred to as Model
Based Design, and it shows how the native UML language
can be effectively used to design hybrid HW/SW systems.

1.1 UML language in brief

A diagram in UML is divided into two categories:
Structure diagrams and Behavioral diagrams. Structure
diagrams represent the structural formation of a system. It
consists the components involved in the modeling.
Behavioral diagrams define how the system is going to
behave and interact. It defines the functionality of the
model.

Visual Paradigm is a software that is used to model UML
diagrams. It is an UML design tool and UML CASE tool
designed to aid system development. Visual Paradigm
supports key industry modeling languages and standards. It
offers complete tool-chest that organizations need for
capturing the requirements, planning software and testing,
class modeling, data modeling, documentation, reporting
etc.

The modeling of the system involves defining the use
case diagrams containing the use cases and the actors
interacting with these use cases. Then the various classes
and their association with each other are defined in class
diagrams. The classes may also contain subclasses. If there
are classes containing softwares or commercial components
or mechanical elements, etc. then special stereotypes are
given to those classes.

Documentation is an important step while modeling in
UML. All the necessary data required to define a class is
included in the class. This makes report generation an easy
task. Apart from this, documentation helps a lot if some
other member of the design team has to use that class or a
similar class in his project. Additionally, if a new member
joins the project and has to make some modifications in a

————————————————
• Danendra Singh is currently pursuing Bachelors degree program in

Electrical engineering at Delhi Technological University, New Delhi, India.
Phone- +919717278586. E-mail: danendrasingh@dtu.ac.in

• Leonardo M. Reyneri is working as a professor in Electronics and
telecommunications department at Politecnico di Torino, Italy.
Phone- +390110904038. E-mail: leonardo.reyneri@polito.it

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 628
ISSN 2229-5518

class, appropriate “comments” can be added to the original
class.

Using OOD for developing the testing system assisted in
time saving and helped in easier debugging of the system.
The schematics of the various components (developed using
Mentor Graphics tool) were directly uploaded into the
Visual Paradigm project. Simulation results from Mentor
Graphics was also incorporated inside the documentation of
classes.

Another remarkable point is that Visual Paradigm allows
you to automatically encapsulate the code embedded into
Software classes and produce C++ code for a
Microcontroller’s Integrated development environment(IDE)
like IAR Embedded workbench. This organizes all the key
elements of a design (e.g. schematics, C code, mechanical
drawings, simulation patterns, documentation) in one place
for easier accessibility.

2 DESCRIPTION OF USE CASE DIAGRAM
A use case diagram represents the interaction of user with
the system. It shows the relationship between the user and
the different use cases in which the user is involved.
The Fig. 1. Shows an example use case diagram to
demonstrate the concept of OOD.

2.1 Actors
These define the human users, external hardware, or other
subjects that interacts with the system under consideration

via a set of well-defined functions which are called “use
cases”.

For Example in Fig. 1. the actors are:

Name Documentation

Test
Operator

Test operator could be a Mechanical / Electrical
Operator which is responsible for making wired
connections of the system.

Solar Cell
Under Test

This is the Test object.
It interacts with the Current Sensor and Voltage
Source.

I2C Tester The I2C Tester interacts with the test equipment
by means of Basic Protocol via an I2C and Logic
Supply Connector located on the back of the test
equipment.
By means of the Basic Protocol , the I2C Tester
can instruct the test equipment to perform a set of
actions onto the device under test.
The I2C Tester can either be a human which uses
its own I2C User Interface, or a Main Controller
capable of performing a number of complex and
highly structured test onto the device under test.

Table 1. Actors for the demo system

2.2 Use Cases
The functionalities of a system written in an organized
fashion defines the use cases of the system. They lists the
actions or events defining the interactions between an actor
and the subsystem.
The use cases in Fig. 1. are:

2.1.1 Connect solar cell
The Test Operator connects physically the Solar Cell Under
Test with the system via Connectors.

2.1.2 Disable System
The I2C Tester switches off a safety switch to cut off the
connections of Solar Cell Under Test with the system.

2.1.3 Enable System
The I2C Tester switches on a safety switch to make
connections of the Solar Cell Under Test with the system.

2.1.4 Set Time
The I2C Tester send a command SET_TIME to the test
equipment by using Write Data to set the Time.

2.1.5 Get Measured Data
Retrieves last measured data (from Measure Cell
Characteristic).

2.1.6 Measure Cell Characteristic
Start and executes characterization of Solar Cell Under Test.

Fig.1. Use case diagram of a demo system

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 629
ISSN 2229-5518

3 DESCRIPTION OF CLASS DIAGRAM
Class diagrams are the basis of object-oriented analysis and
design. They show the classes of the system, their inter-
relationships, the various operations and attributes of the
classes. Class diagrams are used for a wide variety of
purposes, including both conceptual/domain modelling and
detailed design modelling.
The description/documentation of class diagrams for Fig. 2.
Are given as follows:

This contains all the Software and Hardware blocks required
for the Subsystem.
It consists of a Voltage Source which takes in a 5V DC input
from I2C and Logic Supply Connector and converts it into
3.3V DC which powers the MCU and Sense.
It also has a Programmable Resistor whose resistance can be
varied by changing the potential on V_IN(). It is a current
sinking device connected to the Solar Cell Under Test and
varies the current flowing through it.
Alongwith this, there is a Programmable Voltage Source
which generates an output voltage on pin VOUT()
proportional to the input voltage on pin V_IN(). This
becomes active when there is no light falling on the Solar cell
and it is sinking current.
The Programmable Resistor and Programmable Voltage
Source are connected to Solar Cell Under Test by an
electrically controlled GQ Relay AGQ260A03.
Sense consists of current and voltage sensors necessary for
measuring the I-V characteristics of Solar Cell Under Test.

3.1 Sense
Contains a voltage and current sensor.

• The Current sensor is used to measure the current
sinked from the IP_POS() pin. The value of hall
effect voltage corresponding to the sinked current is
available at I_sense() pin.

• The voltage sensor measures voltage across the test
object It sinks a small value of current from the test
object (eg. solar cell).

3.1.2 Internal Structure
This section describes the internal structure and composition
of the sensor Sense, which is composed of an OPAMP plus a
current sensor.

3.2 Programmable Resistor
It acts as a variable resistor (current sinking device),
controlled by a DC voltage(supplied by V_IN() pin).
The current flowing though this device can be controlled by
the input voltage (supplied to V_IN() pin). This can be
attributed to a change in internal resistance.

3.2.1 Operations

Signature Documentation

GND() Ground Terminal.

VOUT() This terminal accepts a variable voltage(0-
40V) from the device which sources a
current. Can only sink current up to 1A to
avoid damage. Cannot source current.
Current entering this pin depends on the
voltage on pin V_IN(). The relationship
between V(V_IN()) and I(VOUT()) is not
accurate but it is guaranteed that I(VOUT())
>= 1A when V(V_IN()) = 3.3V.

V_IN() Control input. The DC voltage between this
pin and GND() controls the current through
the Programmable Resistor.
Minimum voltage is 0V. With minimum
voltage, the current through Programmable

Fig. 2. Class diagram of a demo system

Fig. 3. Internal Structure of Class ‘Sense’.

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 630
ISSN 2229-5518

Resistor is zero (namely, less than 10 µA).
Maximum voltage is 5V.

Table 2. Operations in the class ‘Programmable Resistor’.

3.2.2 Internal Structure
This section describes the internal structure, the design, the
simulation and testing of the Programmable Resistor, which
is composed of a power MOS plus a power resistor.

3.2.3 Schematics

3.2.4 Simulation

3.3 Programmable Voltage Source
It is a programmable DC voltage source. It generates an
output voltage on pin VOUT() proportional to the input
voltage on pin V_IN().
The source can generate voltage up to the supply voltage
VAL() sourcing up to 250mA. Receives a DC voltage from
high impedance V_IN() pin and boosts the voltage by a
factor of 1.5. This boosted voltage is available at VOUT() pin.
Output voltage is:
V(VOUT()) = 1.5 * V(V_IN()).

3.3.1 Operations

Signature Documentation

GND() Ground Terminal.

V_IN() Supplies a DC voltage to Programmable
Voltage Source.

VOUT() Output pin. Source a voltage variable
between 0V to VAL() proportional to
voltage on pin V_IN(). Can only source
current up to 250mA. Cannot sink current.

VAL() Positive supply input; max current is 1A.
This Controls the voltage value at VOUT().

Table 3. Operations in the class ‘Programmable Voltage Source’.

Fig. 5. Simulation results incorporated in the documentation
of Class ‘Programmable Resistor’

Fig. 4(a). Internal Structure of Class ‘Programmable
Resistor’

Fig. 4 (b). Schematics incorporated in the documentation
of Class ‘Programmable Resistor’

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 631
ISSN 2229-5518

3.3.2 Internal Structure

3.3.3 Schematics

3.4 Voltage Source
Supplies a Constant 3.3V output through V3V3_OUT() pin.
Takes in 5V DC input through V5V_IN().
Max output current: 800mA.
Max Input voltage: 20V.
Load Regulation: 0.4%.

3.4.1 Operations

Signature Documentation

GND() Ground terminal.

V5V_IN() 5V +/- 5% supply input; max current is
1A.

V3V3_OUT() Constant voltage output; 3.3V +/- 0.1V;
max 800mA
V5V_IN() is stepped down to 3.3V.

Table 4. Operations in the class ‘Voltage Source’.

3.4.2 Internal Structure

3.5 I2C and Logic Supply Connector
External Interface Connector of ControlBoard.
I2C and Logic Supply Connector has following pins
1. GND()
2. Logic_Sup()
3. SCL()
4. SDA()
5. IRQ()

3.5.1 Operations

Signature Documentation

GND() Logic GND pin

Logic_Sup() Logic Supply Pin, 5V, max current 1A

SCL() I2C clock pin

SDA() I2C data pin

IRQ() Interrupt request for I2C
Table 5. Operations in the class ‘I2C and Logic Supply Connector’.

3.6 Software
Contains the Software required for measuring the solar
characteristics. This contains set of commands that controls
the microcontroller to:

• Measure the voltage across the solar cell using
ClassSense.

• Measure the current sourced by the solar cell using
ClassSense.

• Output the measured current, voltage and time
stamp the user using I2C and Logic Supply
Connector.

• It also controls whether the solar cell will be
sourcing current(when light is falling on it) or it will
be sinking current (when there is no light falling on
its surface).

Fig. 8. Internal Structure of Class ‘Voltage Source’.significance
of the figure in the caption.

Fig. 6. Internal Structure of Class ‘Programmable Voltage Source

Fig. 7. Schematics incorporated in the documentation of
Class ‘Programmable Voltage Source’.

 IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 632
ISSN 2229-5518

3.7 Solar Panel Under Test
This is the Test object. It can also have the reverse protection
diode.
It interacts with the Current Sensor and Voltage Source to
Measure Cell Characteristic

3.7.1 Operations

Signature Documentation

POS() Positive terminal connection for the Solar
Panel Under Test.

NEG() Negative terminal connection for the Solar
Panel Under Test.

Table 6. Operations in the class ‘Solar Panel Under Test’.

3.8 GQ Relay AGQ260A03
High Sensitivity DPDT switching relay. Used to switch the
connection of Programmable Voltage Source or
Programmable resistor with Solar Cell Under Test.

3.8.1 Operations

Signature Documentation

POS() Connects the Programmable Resistor with
Solar Panel Under Test when this control
port is high.

NEG() Connects the Programmable Voltage Source
with Solar Panel Under Test when this
control port is high.

Table 7. Operations in the class ‘GQ Relay AGQ260A03’.

4 CONCLUSION
The Study of OOD with the help of a testing System
example shows that a complex system can be modelled,
visualized, modified, presented and even documented very
easily by using OOD.
The division of various parts of the subsystem in classes
helped in better organization and reusability of the parts.
Any new user now takes a lesser time to understand a
system as it would have taken without the implementation
of OOD. Whenever a project report is required, UML (a tool
for OOD) can easily generate it from the documentation of
the various classes.
OOD helps in reducing the software complexities of the
system. UML links the software coding of a class to an IDE.
Hence now, only a small portion of the entire code is
required in different global classes which can be combined
to generate the main code in the IDE by accessing the
different classes in the UML.
This proves that OOD is very effective for system modelling
and designing. Improvements in the modelling platforms
will encourage more and more people to use it and hence
boost their productivity while decreasing their time input.
As next step of study we intend to implement OOD for
realizing a complete system for modular nanosatellites.

Fig. 9. Structure of Class ‘Software’.

Fig. 10. Structure of Class ‘Solar Panel Under Test’.

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 633
ISSN 2229-5518

REFERENCES

[1] Booch G.,‘Object-Oriented Analysis and Design with Applications’
,Benjamin/Cummings,1994.

[2] PanosFitsilis,Vassilis C. Gerogiannis,Leonidas G. Anthopoulos,‘Role of
unified modelling language in softwaredevelopment in Greece – results from
anexploratory study’,IET SOFTWARE, 2014.

[3] Mark Read,Paul S Andrews,Jon Timmis,VipinKumar,’Modelling biological
behaviours with the unified modelling language: an immunological case study
and critique’,JOURNAL OF THE ROYAL SOCIETY INTERFACE,2014.

[4] Peneva J., Ivanov S. and TuparovG.: ‘Utilization of UML in Bulgarian SME –
Possible Training Strategies’, International Conference on Computer Systems
and Technologies –CompSysTech, 2006.

[5] Gu, V.C., Cao, Q. and Duan, W.: ‘Unified Modelling Language (UML) IT
adoption — A holistic model of organizational capabilities perspective’, Decision
Support Systems, 2012, 54, (1), pp.257-269.

[6] Fuentes, L. and Vallecillo, A.: ‘An Introduction to UML Profiles’, The
European journal for theInformatics Professional, 2004, 5, (2), pp. 6-13.

[7] DobingB. and Parsons J.: ‘Dimensions of UML diagram use: A survey of
practitioners’,Journal of Database Management, 2008, 19, (1), pp. 1-18.

[8] Dobing, B. and Parsons, J.: ‘How UML is used’, Communication of the ACM,
2006, 49, (5), pp.109-113.

[9] Batra, D.: ‘Unified Modelling Language (UML) Topics: Cognitive Issues in
UML Research’,Journal of Database Management, 2009, 20, (1), pp. i-x.

[10] Batra D.: ‘Unified Modelling Language (UML) topics: The past, the
problems, and the prospects’, Journal of Database Management, 2008, 19, (1), pp.
i-vii.

[11] Agarwal, R. and Sinha, A.P.: ‘Object-oriented modelling with UML: a study
of developers' perceptions’, Communications of the ACM, 2003, 46, (9), pp. 248–

256.

IJSER

	2 Description of Use case diagram
	2.1 Actors
	2.2 Use Cases
	2.1.1 Connect solar cell
	2.1.2 Disable System
	2.1.3 Enable System
	2.1.4 Set Time
	2.1.5 Get Measured Data
	2.1.6 Measure Cell Characteristic

	3 Description of Class diagram
	3.1 Sense
	3.1.2 Internal Structure
	3.2 Programmable Resistor
	3.2.1 Operations
	3.2.2 Internal Structure
	3.2.3 Schematics
	3.2.4 Simulation
	3.3 Programmable Voltage Source
	3.3.1 Operations
	3.3.2 Internal Structure
	3.3.3 Schematics
	3.4 Voltage Source
	3.4.1 Operations
	3.4.2 Internal Structure
	3.5 I2C and Logic Supply Connector
	3.5.1 Operations
	3.6 Software
	3.7 Solar Panel Under Test
	3.7.1 Operations
	3.8 GQ Relay AGQ260A03
	3.8.1 Operations

	4 Conclusion
	References
	[1] Booch G.,‘Object-Oriented Analysis and Design with Applications’ ,Benjamin/Cummings,1994.
	[2] PanosFitsilis,Vassilis C. Gerogiannis,Leonidas G. Anthopoulos,‘Role of unified modelling language in softwaredevelopment in Greece – results from anexploratory study’,IET SOFTWARE, 2014.
	[3] Mark Read,Paul S Andrews,Jon Timmis,VipinKumar,’Modelling biological behaviours with the unified modelling language: an immunological case study and critique’,JOURNAL OF THE ROYAL SOCIETY INTERFACE,2014.
	[4] Peneva J., Ivanov S. and TuparovG.: ‘Utilization of UML in Bulgarian SME – Possible Training Strategies’, International Conference on Computer Systems and Technologies –CompSysTech, 2006.
	[5] Gu, V.C., Cao, Q. and Duan, W.: ‘Unified Modelling Language (UML) IT adoption — A holistic model of organizational capabilities perspective’, Decision Support Systems, 2012, 54, (1), pp.257-269.
	[6] Fuentes, L. and Vallecillo, A.: ‘An Introduction to UML Profiles’, The European journal for theInformatics Professional, 2004, 5, (2), pp. 6-13.
	[7] DobingB. and Parsons J.: ‘Dimensions of UML diagram use: A survey of practitioners’,Journal of Database Management, 2008, 19, (1), pp. 1-18.
	[8] Dobing, B. and Parsons, J.: ‘How UML is used’, Communication of the ACM, 2006, 49, (5), pp.109-113.
	[9] Batra, D.: ‘Unified Modelling Language (UML) Topics: Cognitive Issues in UML Research’,Journal of Database Management, 2009, 20, (1), pp. i-x.
	[10] Batra D.: ‘Unified Modelling Language (UML) topics: The past, the problems, and the prospects’, Journal of Database Management, 2008, 19, (1), pp. i-vii.
	[11] Agarwal, R. and Sinha, A.P.: ‘Object-oriented modelling with UML: a study of developers' perceptions’, Communications of the ACM, 2003, 46, (9), pp. 248–256.

